
Writing Small And Fast Software

Felix von Leitner
Convergence

felix@convergence.de

January 2001

Abstract
Software is becoming larger and slower quicker than RAM prices fall

and computer become faster. Good programmers are rare and expensive,
so people rather write bad software and buy new hardware than going
for quality.

Writing Small Software

Felix von Leitner January 2001

Introduction

Academia says: trade code size for speed (inlining, macros, loop unrolling,
immensely complex monster algorithms...)

In practice, more code is almost always bad: it trashes the CPU cache, hogs
the memory bus, uses up more CPU cycles, makes a security audit of the code
harder, is harder to follow and maintain, and - last but not least - more code
needs more documentation.

Writing Small Software 1

Felix von Leitner January 2001

Executive Summary

Indirection Induces Bloat And Kills Performance!

Remove Unnecessary Indirection!

Writing Small Software 2

Felix von Leitner January 2001

Know Thy Enemy!

The main reasons for large code are:

1. negligence

2. over-eagerness

3. bad management

4. multiple layers of wrappers

Writing Small Software 3

Felix von Leitner January 2001

Enemy: Negligence

Tidying up old code is often more work than writing new code. Common
problems are:

1. merging code but don’t remove overlap

2. leaving debug code in

3. using general instead of specific APIs (e.g. using fprintf instead of write
for a static string)

4. implementing the same stuff all over the place (often found in team
environments)

Writing Small Software 4

Felix von Leitner January 2001

Enemy: Over-Eagerness

Especially young and inexperienced programmers fall for the utopia to
create the ultimate, perfect, all-encompassing API.

Object oriented programs tend to define many unneeded methods and
routines ”just in case”. Point in case: C++ iostream and libg++.

Fact: Experience shows that your API will not be perfect.

Fact: Using APIs that have been extended is often confusing.

Writing Small Software 5

Felix von Leitner January 2001

Enemy: Bad Management

When merging code into a common source tree, it is important to spend
time looking for code that solves the same problem. The instances of that code
then have to be reduced to one (example: AVL trees in the Linux kernel).

When more than one person works on a project, every CVS check-in has to
be regarded as a code merge in this sense!

Paying programmers by the line of code does not help, of course.

Writing Small Software 6

Felix von Leitner January 2001

Enemy: Wrappers Wrapping Wrappers Around Wrappers

This is a particularly common problem in C++ code.

Classic rationale: portability.

Classic example: thread libraries wrapping pthread, which in turn wraps
clone().

Even more classic examples: kde, wrapping qt, wrapping xlib. gtk–,
wrapping gtk+, wrapping xlib.

Apparently, there even is a Qt emulation wrapper around gtk+!

Writing Small Software 7

Felix von Leitner January 2001

Enemy: Dynamic Run-Time Resolving

This can be done very efficiently, but more often it is done very poorly.

Examples: signals in Qt, hash tables for symbolic attribute lookup in gtk+,
late binding in DYLAN.

Writing Small Software 8

Felix von Leitner January 2001

What Can I Do?

1. generalize routines only if it’s free

2. write specific interfaces first

3. use specific routines instead of generic

4. be aware of the bloat you generate

5. your idea here

Writing Small Software 9

Felix von Leitner January 2001

Generalize Routines Only If It’s Free

An internal function in diet libc:

int __ltostr(char *s, int size, unsigned long i,
int base, char UpCase);

unsigned int fmt_ulong(char *dest,unsigned long src);

A good test whether your interface is too generic is: if you leave the names
of the arguments away, is it still obvious what each argument does?

int __ltostr(char *, int, unsigned long, int, char);
int fmt_ulong(char *,unsigned long);

Writing Small Software 10

Felix von Leitner January 2001

Write Specific Interfaces First

• Programmer tries to write reusable code, defines very broad and generic API

• Initially, the problem is not well known.

• Much time is wasted on implementing unneeded functionality in broad
interfaces.

• In the end, removing the bloat would alter the API (which programmers
know is very bad).

• Also, someone might already rely on the API

Writing Small Software 11

Felix von Leitner January 2001

When You Need To Extend An API

Do not make an existing function more powerful!

Add a new function instead!

Writing Small Software 12

Felix von Leitner January 2001

But Doesn’t The Compiler Remove Unneeded Code?

$ cat > t.c
int foo(int bar) { return bar+2; }
int bar(int baz) { return baz*23; }
int main() { printf("%d\n",bar(17)); }
$ gcc -c t.c
$ nm t.o
0000000000000014 T bar
0000000000000000 T foo
0000000000000000 t gcc2_compiled.
0000000000000034 T main

U printf
$

Writing Small Software 13

Felix von Leitner January 2001

But Doesn’t The Linker Remove Unneeded Code?

$ cat a.c
char magic[]="bloat";
$ cat b.c
int main() { puts("hello, world"); }
$ gcc -o b a.c b.c
$ grep bloat b
Binary file b matches
$ gcc -o b b.c
$ grep bloat b
$

Writing Small Software 14

Felix von Leitner January 2001

And When I Use Shared Libraries?

Shared libraries are the single technology that has contributed most to
bloated software, because programmers no longer see the actual size of their
code.

All the bloat is still there and wastes disk space.

Modern operating system support demand paging, i.e. only the used pages
are actually loaded into memory. This gives bloat offenders a good conscience
but in reality it still means that a lot of memory is wasted.

The page granularity is 4k. Smaller quantums of memory can not be not
mapped because they are not needed. The data segment is coalesced!

Writing Small Software 15

Felix von Leitner January 2001

And When I Use Static Libraries?

ld does not include unreferenced object files from static libraries.

That’s why the diet libc is initially only a static library.

Writing Small Software 16

Felix von Leitner January 2001

Prefer Specific Over Generic Routines

This advice is for when you use only a subset of the generic routine!

For temporary storage, use alloca instead of malloc.

Use strchr instead of strstr.

Use qsort and bsearch instead of using AVL trees for everything but very
dynamic or huge sets.

Writing Small Software 17

Felix von Leitner January 2001

Optimize For The Common Case, Not The Worst Case

Arrays are great! The code is easy to understand and less error prone than
lists or trees.

Arrays can be resized easily (realloc), you can traverse an array without
trashing the cache, you can free all elements by freeing the array (unless they
contain pointers, of course).

Writing Small Software 18

Felix von Leitner January 2001

Be Aware Of The Bloat You Generate

$ cat > t.cc
#include <string>
#include <iostream>
main() {
string s="foo";
cout << s << endl;

}
$ g++ -static -s -o t t.cc
$ du -H t
387k t
$

Writing Small Software 19

Felix von Leitner January 2001

Treat malloc As Expensive Operation

Malloc and friends are potentially very expensive.

$ cat > mymalloc.c
#include <stdio.h>
static int mallocs=0;
void sayit() { fprintf(stderr,"%d mallocs\n",mallocs); }
int malloc(unsigned long size) {
if (!mallocs++) atexit(sayit);
return __libc_malloc(size);

}
$ gcc -shared -o mymalloc.so mymalloc.c
$ LD_PRELOAD=$PWD/mymalloc.so grip
20794 mallocs

Writing Small Software 20

Felix von Leitner January 2001

Bad API vs. Good API

Bad:

int fd=open("foo",O_WRONLY|O_CREAT,0600);

Good:

int fd=open_write("foo");

Writing Small Software 21

Felix von Leitner January 2001

Bad API vs. Good API

Bad:

int i;
char buf[100];
sprintf(buf,"the number is %d",i);

Good:

stralloc s={0};
stralloc_copys(&s,"the number is ");
stralloc_catuint(&s,i);

Writing Small Software 22

Felix von Leitner January 2001

Profile, Don’t Speculate

Trading space for performance is not bad per se!

Use gprof to find the code segments that are performance critical. Then
only enable tradeoff optimizer options on those code, not the whole project.

Little known gcc option: -Os is like -O2 but without trade-offs that waste
space.

Other gcc options to save space: -fomit-frame-pointer -mcpu=i386

Use nm and objdump to look at the symbol table.

Writing Small Software 23

Felix von Leitner January 2001

Inline Functions

$ cat > t.c
inline int foo() { return 3; }
int bar() { return foo(); }
$ gcc -O2 -c t.c
$ nm t.o
00000000 T bar
0000000c T foo
00000000 t gcc2_compiled.
$

Writing Small Software 24

Felix von Leitner January 2001

Static Inline Functions

$ cat > t.c
static inline int foo() { return 3; }
int bar() { return foo(); }
$ gcc -O2 -c t.c
$ nm t.o
00000000 T bar
00000000 t gcc2_compiled.
$

Learn how to use static to save space (and keep the name space clean)!

Writing Small Software 25

Felix von Leitner January 2001

Alloca

Alloca allocates storage from the stack. The storage is returned when the
program leaves the scope (i.e. no need to free it explicitly).

Malloc needs to keep elaborate data structures and do locking to be thread-
safe. Alloca decrements a register.

In C++, malloc() is often hidden by using the new operator. C++ is very
dangerous because it hides complexity and bloat from the programmer.

Writing Small Software 26

Felix von Leitner January 2001

Introducing libowfat

Why the name libowfat? Because you link it with ”-lowfat”!

libowfat is a GPL reimplementation Dan Bernstein’s internal helper
functions.

Why reimplement them? His APIs are exemplary for good API design.

Writing Small Software 27

Felix von Leitner January 2001

libowfat: byte.a

Return index, not pointer. Operand being operated on (i.e. destination,
main operand) is #1, the rest are parameters.

int byte_chr(void*,int,char);
int byte_rchr(void*,int,char);
void byte_copy(void* out, int, void* in);
void byte_copyr(void* out, int, void* in);
int byte_diff(void*, int, void*);
void byte_zero(void*, int);
#define byte_equal(s,t) (!byte_diff((s),(t)))

Writing Small Software 28

Felix von Leitner January 2001

libowfat: str.a

What did the people smoke who made strcpy and strcat return
pointers?!

int str_copy(char* out,char* in);
int str_diff(char*,char*);
int str_diffn(char*,char*,int);
int str_len(char*);
int str_chr(char*,char);
int str_rchr(char*,char);
int str_start(char*,char*);
#define str_equal(s,t) (!str_diff((s),(t)))

Writing Small Software 29

Felix von Leitner January 2001

libowfat: fmt.a

int fmt_long(char*,signed long);
int fmt_ulong(char*,unsigned long);
int fmt_xlong(char*,unsigned long);
int fmt_8long(char*,unsigned long);
int fmt_ulong0(char*,unsigned long,unsigned int);
int fmt_plusminus(char*,int);
int fmt_minus(char*,int);
int fmt_str(char*,char*);
int fmt_strn(char*,char*,int);

Writing Small Software 30

Felix von Leitner January 2001

libowfat: scan.a

Pass NULL and you get just the length it would have taken.

int scan_long(char*,signed long*);
int scan_ulong(char*,unsigned long*);
int scan_xlong(char*,unsigned long*);
int scan_8long(char*,unsigned long*);
int scan_plusminus(char*,int*);
int scan_whitenskip(char*,int);
int scan_nonwhitenskip(char*,int);
int scan_charsetnskip(char*,int);
int scan_noncharsetnskip(char*,int);

Writing Small Software 31

Felix von Leitner January 2001

libowfat: open.a

int open_read(const char *filename);
int open_excl(const char *filename);
int open_append(const char *filename);
int open_trunc(const char *filename);
int open_write(const char *filename);

Writing Small Software 32

Felix von Leitner January 2001

libowfat: stralloc.a

int stralloc_ready(stralloc*,int);
int stralloc_readyplus(stralloc*,int);
int stralloc_copyb(stralloc*,char*,int);
int stralloc_copys(stralloc*,char*);
int stralloc_copy(stralloc*,stralloc*);
int stralloc_catb(stralloc*,char*,int);
int stralloc_cats(stralloc*,char*);
int stralloc_cat(stralloc*,stralloc*);
int stralloc_append(stralloc*,char*);
int stralloc_starts(stralloc*,char*);
int stralloc_catulong0(stralloc*,unsigned,int);
int stralloc_catlong0(stralloc*,signed,int);
void stralloc_free(stralloc* sa);

Writing Small Software 33

Felix von Leitner January 2001

Duh!

Be aware of what code the compiler generates.

Use gprof and objdump.

Writing Small Software 34

